Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster

نویسندگان

  • Oksana Bilyk
  • Olga N. Sekurova
  • Sergey B. Zotchev
  • Andriy Luzhetskyy
چکیده

Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the "capture" vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning of EprA1 gene of Aeromonas hydrophila in Lactococcus lactis

Bacterial-based systems as live vectors for the delivery of heterologous antigens offer a number of advantages as vaccination strategies. Developments in genetic engineering have given Gram-positive lacticacid bacteria (LAB) the advantage of being used as a host expression system for antigen delivery to inducethe immune response. A fragment containing the full length of the “eprA1” ...

متن کامل

Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering

Heterologous expression of biosynthetic pathways is an important way to research and discover microbial natural products. Bacillus subtilis is a suitable host for the heterologous production of natural products from bacilli and related Firmicutes. Existing technologies for heterologous expression of large biosynthetic gene clusters in B. subtilis are complicated. Herein, we present a simple and...

متن کامل

Codon optimization and cloning of bovine prochymosin gene for proper expression in tobacco plant

Bovine chymosin enzyme is one of the most commonly used enzymes in the dairy industry. The production of this enzyme from its natural source does not meet the needs of this huge industry. The production of recombinant bovine chymosin in plants can be a good alternative to native enzyme. Insertion and expression of foreign genes in plants can occur in the nucleus and chloroplast organelles. The ...

متن کامل

Cloning and heterologous expression of Laccase in pichia pastoris and determination some of biochemical properties

Laccase (EC 1.10.3.2) are multi-copper oxidase which catalyze the oxidation aromatic and non- aromatic compounds with electron reduction of molecular oxygen to water. Nucleotide sequence of laccase (accession number : ) was optimized according codon preference of Pichia pastoris. Gene was synthesized and cloned into pPICZalpha A. laccase under control of AOX1 promoter was transformed to P.pasto...

متن کامل

Cloning and heterologous expression of the spectinabilin biosynthetic gene cluster from Streptomyces spectabilis.

Spectinabilin is a rare nitrophenyl-substituted polyketide metabolite. Here we report the cloning and heterologous expression of the spectinabilin gene cluster from Streptomyces spectabilis. Unexpectedly, this gene cluster is evolutionarily closer to the aureothin gene cluster than to the spectinabilin gene cluster from Streptomyces orinoci. Moreover, the two nearly identical spectinabilin gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016